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On the mechanics of the arrow: Archer’s Paradox
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Abstract. In ancient bows the grip of the bow was in the way of the arrow. The arrow needed to get round the
bow while being accelerated; this phenomenon is called the ‘Archer’s Paradox’. In the forties it was observed
experimentally with high-speed cameras that the arrow vibrates in a horizontal plane perpendicular to the vertical
median plane of the bow. These movements are started and controlled by the movements of the two points of
contact with the bow, viz. the middle of the string in contact with the rear end of the arrow and the grip where the
arrow slides along the bow. The latter contact imposes a moving-boundary condition. The numerically obtained
results are satisfactorily in agreement with experimental data. The model can be used to estimate the drawing
force of ancient bows of which only the contemporary arrows are available and also for the design of new archery
equipment.
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1. Introduction

One of the most fascinating phenomena in archery is called the ‘Archer’s Paradox’. We start
with a simplified exposition of this seeming contradiction. The origin of the paradox is the
vibration of the arrow in a horizontal plane after it has been released, while the bow is kept
vertical. The vibration is caused by the bending of the arrow during and after its release. In
principle, there are the following two different causes for this bending of the arrow.

The first is related to the way in which the arrow is released; here we are considering
the Mediterranean release. When the bow is fully drawn, it is kept in this position by three
fingers of the archer hooked on the string, the forefinger above and two fingers below the nock
(grooved rear end) of the arrow. When the arrow is launched, the string slips off the three
finger tips and in this way the nock of the arrow is moved swiftly sideways. Hence, by its
inertia, the arrow will bend.

The second cause of the bending of the arrow is related to the width of the rigid middle
part of the bow, called the grip or handle. When we consider a classical bow in fully drawn
position, the arrow will form a small angle with the median plane of the bow. After release
this angle increases swiftly, because the distance between nock and grip decreases swiftly.
Then again by inertia the arrow will bend.

The bending resulting from the two mentioned causes is increased by the large longitudinal
force exerted by the string on the nock. This force has a buckling effect on the arrow.
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The Netherlands
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Figure 1. Illustration of Archer’s Paradox (after Klopsteg [1, page 182 ]). Schematic representation of
shapes of arrow during its passage of the bow, based on evidence from speed-flash photography.

The results of the two causes of the bending of the arrow can intensify each other or reduce
each other. It is not difficult to see that they reduce each other, for the classical bow, when the
arrow rests on the knuckle of the forefinger of the bow hand, i.e. the hand that grips the bow.
Perhaps this is the reason that this way of shooting was and still is in use with classical bows.

When the arrow leaves the string it is still curved and starts to vibrate freely in a horizontal
plane with a frequency which depends on its mass distribution and on its flexural rigidity
distribution. Now the inertial and the elastic properties of the arrow have to be such that, while
passing the grip of the bow, the arrow does not slap with its rear end against the grip but snakes
around it, otherwise the accuracy of the shooting would be decreased. The phenomenon of
the arrow snaking around the grip of the bow is called the Archer’s Paradox. In Figure 1 the
paradox is illustrated as taken from Klopsteg [1, page 182].

An application of the above-mentioned phenomenon can be made as follows. We assume
that in former times, when the bow was an important weapon, the arrow was matched, possibly
by trial and error, to a bow so that after release it could pass the grip without impediment. In
that case there is a relation between the properties of the bow such as its draw length, its draw
weight (force in fully drawn position) and the inertial and elastic properties of the arrow. This
relation makes it possible to estimate the draw weight of a bow when arrows which have been
shot from the bow are available.

Calculations suggested that the heavy 60 gram war arrows as used at Agincourt in 1415
during the Hundred-Years War, could have been shot from bows with a draw weight of over
450 N. This, however, seemed an unreasonably large value: nowadays only a few archers
can master bows of such a great weight. Based on present-day experience a figure closer to
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Figure 2. (a) Modern right-handed bow with cut-out. (b) Enlarged cross-section of grip with arrow rest
and pressure point. The outer screw adjusts the whole pressure button mechanism in and out the median
plane and the inner screw adjusts the initial compression of the spring.

350 N was thought more likely. The high value of over 450 N was, however, confirmed by
the study of 139 longbows and over 3000 arrows recovered from the Mary Rose (Hardy [2]
and Paterson [3]). The Mary Rose was a warship of Henry VIII, which sank in 1545 and
was recovered in 1982. In [2] it is stated that: “young, fit men in constant practice chosen for
well-paid military service from a nation to whom the shooting of longbows had been second
nature”, could use the heavy Mary-Rose bows.

Hickman invented the so-called centre-shot bow. A cut-out of the grip of the bow allows
the arrow to move in the median plane of the bow in which the elastic limbs move (Figure 2a).
When the bow string is drawn by the right hand (right-handed bow), the cut-out is at the left
side of the bow as seen by the archer and inversely for the left-handed bow where the string
is drawn by the left hand. The arrow is vertically supported by an arrow rest, a slender elastic
projection on the side of the bow in the cut-out. The point of contact with the grip, where the
lateral motion of the arrow is one-sidedly constrained, is called the pressure point. Nowadays
a pressure button is often used for this constraint. This is a small spring-loaded rod with a
piece of slippery plastic on the end (Figure 2b). The amount of protrusion of the pressure point
out of the median plane of the bow, as well as the compression of the spring of the pressure
button, can be separately adjusted by means of two screws.

Already in the forties Hickman [1] took high-speed pictures of the vibrating arrow and
showed that the bending properties of the arrow are important. Also P¸ekalski [4, 5] showed
by means of a high-speed film the shape of the vibrating motion of the arrow and gave a
theoretical treatment of the snaking phenomenon.
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To study the paradox, we have developed a mathematical model for the lateral movements
of the arrow. For this reason we have needed the longitudinal force acting on the arrow, which
follows from our previous work of which we give a short survey. We dealt with the dynamics of
the bow and arrow, using a simple representation of the arrow, namely a point-mass placed at
the middle of the string [6]. The elastic limbs of the bow were represented by elastic lines with
a non-uniform mass distribution and a non-uniform flexural rigidity distribution, undergoing
large deflections. For the quasi-static deformation of the bow from the braced situation (straight
string) to the fully drawn situation, the equations for this geometrically nonlinear model were
solved numerically by means of the repeated application of a mathematical “shooting” method
[7]. This yields the Static-Force-Draw curve (SFD curve) which shows the force exerted by
the archer when deforming the bow to full draw.

A finite-difference technique was used for the solution of the dynamic equations of the
bow and arrow (point-mass) after release [8, 9]. This yields the Dynamic-Force-Draw (DFD)
curve which gives the acceleration force exerted by the string on the arrow as a function of
traveled distance. Both curves differ significantly from each other, which is caused by the
inertia of the bow limbs as is explained in Section 2.

The mechanics of the “arrow”, which is the subject of this paper, is treated partly uncoupled
from the mechanics of the “bow and arrow”. For the mechanics of the arrow we use, for the
acceleration force exerted by the string on the nock of the arrow, the DFD curve mentioned
in the previous paragraph. The arrow is now considered as a vibrating beam with two point-
masses, namely the nock at the rear end and the arrowhead at the front end. The arrow slides
without friction over the arrow rest by which it is supported vertically and along the pressure
point by which it is unilaterally constrained horizontally. The swift transverse movement of
the nock during release, caused by the slipping of the string from the finger tips, will be
assumed to be known.

The transverse vibratory movement of the arrow is described by two systems of partial
differential equations (PDE’s) when the arrow has contact with the pressure point. Each system
is valid on one of the two adjacent spatial intervals covering the arrow. The connection point
of these intervals is at the pressure point. At this point the transverse displacement of the
two intervals and some of their spatial derivatives have to satisfy suitable relations, as will
be discussed in Section 2. The position of the pressure point varies with respect to the arrow,
which renders the problem a moving-boundary problem. Because in our formulation the
longitudinal acceleration of the arrow is known in advance, the place of the moving boundary
is known with respect to the arrow. When the arrow has lost contact with the pressure point,
only one system of PDE’s is needed which is valid along the whole length of the arrow. Further
there are in both cases two boundary conditions, one at the rear end being the equation of
motion of the nock and another at the front end being the equation of motion of the arrowhead.
Initial conditions complete the formulation of the problem.

Pȩkalski’s mathematical model [4, 5] and his analysis was the incentive for reconsidering
the problem. The model presented here is more accurate than Pȩkalski’s model, due to less
stringent assumptions. For instance the acceleration of the arrow and consequently the lon-
gitudinal buckling force caused by the acceleration is rather large and may not be neglected.
Also, the release is modeled more realistically and this gives a better start for the bending of
the arrow.

In Section 3 a finite-difference scheme is developed to solve the set of PDE’s numerically.
In Section 4 we compare our results with the theoretical results obtained by Pȩkalski and with
the bending shapes of the arrow as obtained by his high-speed film. It appears that during the
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Figure 3. Static deformation of the modern working-recurve bow: the unbraced bow (2), braced bow
and fully drawn bow ( ) and some intermediate situations ( ). At t = 0 the arrow and the
moving-coordinate system (�; �), in which the transverse movement of the arrow is described, are
shown.

important last part of the period of time before the nock of the arrow passes the grip of the
bow, our calculated shapes of the arrow are closer to reality than those of Pȩkalski.

2. Formulation of the problem

We start with a short, more systematic, description of the bow where possibly some repetitions
occur of subjects mentioned in the introduction. The reader is referred to [6, 9], for instance, for
an elaborate discussion. The braced bow (straight string) is placed in a right-handed Cartesian
coordinate system (x; y; z), being an inertial frame of reference (see Figure 3). The x-axis
coincides with the line of symmetry of the bow and the origin O is the intersection of this line
with the line that connects the points where the rigid middle part of the bow meets the elastic
limbs. The z-axis is perpendicular to the vertical median plane of the bow. When the bow is
drawn quasi-statically from the braced situation to full draw, the x-coordinate of the middle
of the string coincides with the nock of the arrow and is denoted by b.

In Figure 3 the unbraced, the braced (b = jOHj) and the fully drawn (b = jODj) shapes
of a modern working-recurve bow are schematically shown. The distance jOHj is called the
brace height and the distance jODj the draw. The static force exerted by the archer in the
positive x-direction, is denoted by F (b) which follows directly from the already mentioned
SFD curve. In the fully drawn situation, the force F (jODj) is called the weight of the bow. The
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Figure 4. Calculated Static-Force-Draw curve, F (b) ( ), and Dynamic-Force-Draw curve, E(b)
( ), of a modern working-recurve bow (Greenhorn Comet TD 350, 68 inch, 30 lbs).

projection of the pressure point on the x-axis is indicated by G, this is also the point where the
archer holds the bow and which can be considered as the pivot point of bow rotations which
can occur after release. The components of the distance between the origin and the pressure
point in the x- and z-direction are denoted by jOGj and hg , respectively. For ancient bows
jOGj = 0 and hg is the half width of the grip. In Table 1 a survey of various parameters of a
bow and arrow is given.

In Figure 4 we show, for a modern working-recurve bow as discussed in [9], the calculated
SFD (F (b)) and the DFD (E(b)) curves, where E(b) is the acceleration force acting upon the
arrow as function of b. The mass of the rather stiff string is lumped into three mass points each
equal to one-third of the mass of the string. These points are at the two tips of the limbs and
in the middle of the string where it adds to the mass of the nock of the arrow. The addition of
the lumped part of the mass to the nock is only used with respect to the calculation of the DFD

curve and not later on with respect to transverse motions. At release (t = 0+) the acceleration
force E(jODj), is smaller than the static draw-force, F (jODj). This remains true for some
time. This is caused by the mass of the elastic limbs and the inertia of the added parts of the
string, which have to be accelerated as well. After this period of time, E(b) is larger than
F (b) because then the inertia of the limbs, which then are decelerated, adds to the force on
the arrow. Arrow exit at t = tl, when the arrow leaves the string, is defined by the instant the
acceleration force E(b) becomes zero.

The arrow is inextensible and its longitudinal motion is determined by the acceleration
force E(t) = E(b(t)). Only transverse deflections which are small with respect to the length
of the arrow will be considered. The arrow is placed in a moving Cartesian coordinate system
(�; �), the �-axis coinciding with x-axis, but pointing in the opposite direction and the �-axis
parallel to the z-axis. The origin of the (�; �) system has the same x-coordinate as the nock of
the arrow (Figures 3 and 5).
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Figure 5. Coordinate system (�; �) in which transverse motion of arrow is described. Displacement and rotation
of bow are gG(t) and �Gy(t). Transverse displacement of nock, �(0; t), is sum of displacement caused by the
movement of the bow, gG(t) + hg � (b(t) + jOGj)�Gy(t), and elongation of spring which represents transverse
elasticity of bow, see (8). (E ) is position of pivot point G and (#) is position of pressure point, at t = 0. (B) and
( ) represent positions for t > 0. During release nock slides along hypotenuse of hatched right-angled triangle.

Figure 6. Scheme of model of arrow. Each element, i = 1; � � � ; n, has length ��. Between grid-points
we have mass per unit of length �C and flexural rigidity EI . Two fictitious points outside arrow are
introduced, grid-points i = �1 and i = n + 1. Pressure point at � = �
 . Grid point to the left of
pressure point is denoted by g. Two extra unknown bending moments M

�

and M+ at points g and
g + 1, respectively.

The arrowshaft of length la is assumed to be an inextensible Euler-Bernoulli beam hinged
at the point of contact with the string by the nock. It is supported by the arrow rest and in
the horizontal plane unilaterally guided by the pressure button with built-in spring with initial
compression. At each end of the shaft there is a mass-point, the nock with mass man and the
arrowhead with mass mat. The cross-sectional quantities are the bending moment M(�; t), a
lateral force V (�; t) in the �-direction and a longitudinal force H(�; t) in the �-direction. The
positive directions of M , V and H are shown in Figure 6.

In the coordinate system (�; �) the following set of PDE’s describe the motion of the shaft
of the arrow

�C
@2�

@t2
(�; t)=

@V

@�
; (1)



292 B.W. Kooi and J.A. Sparenberg

V (�; t)=�
@M

@�
+H(�; t)

@�

@�
; (2)

M(�; t)=EI
@2�

@�2 ; (3)

where �(�; t) is the transverse deflection of the arrow which is a function of time t and distance
� from the rear end. The circular cylindrical arrow is endowed with mass per unit of length
�C , where � is the specific mass of the shaft material, and with flexural rigidity EI , where
E is Young’s modulus of the shaft material. The area C of the material cross-section and its
second moment of inertia I with respect to the centre-line of its cross-section are given by

C = �
�
d2 � (d� 2g)2

�
=4 and I = �

�
d4 � (d� 2g)4

�
=64 : (4)

where d and g are the external diameter and the shaft wall thickness of the arrow, respectively,
which are chosen to be independent of �. This holds for modern tubular arrowshafts. Formerly,
solid wooden arrowshafts were used; in that case we have g = 1/2d. The total mass of the
arrow is denoted by 2ma = man + �Cla +mat, where the factor 2 is inserted to account
for symmetry of the bow. The longitudinal force H(�; t), 0 < � < la, along the arrow is
coupled to the acceleration of the arrow in the x-direction. For � # 0 it is the acceleration
force, E(t) = �2ma

�b, exerted by the string on the arrow minus the force, �man
�b, needed

to accelerate the nock. We assume that E(t) is equal to the value found for the bow with
the arrow treated as a point mass in the middle of the string, (Figure 4). For � 2 (0; la) the
following expression holds

H(�; t) = �b(t)
�
�C(la � �) +mat

�
: (5)

After arrow exit we have no acceleration force and because the arrow is inextensibleH(�; t) =
0 for t > tl.

We now give some considerations in connection with possible movements of the bow out
of the (x; y)-plane during and after release. The movements are assumed to be small so that
their influence is linear. The displacement of the grip in the z-direction is denoted by gG(t)
and the angle of rotation around a line parallel to the y-axis and through the pivot point G on
the x-axis, is denoted by �Gy(t). Modern bows are often equipped with several stabilizers to
reduce lateral movements as well as rotations of the bow. When shot by an individual archer
from hand, experimental values of gG(t), measured as described in [10, 11], can be used to
simulate the motion of the grip. Then the bow is held loosely by the archer so that it can rotate
freely around the vertical axis through the pivot point G and equations of motion for the bow
as a whole have to be formulated to determine �Gy(t) in the course of the calculation of the
motion of the arrow. When mechanical shooting machines are used, the grip is assumed to
be at a fixed point in the coordinate system (x; y; z). In that case we have gG(t) = 0 and
also �Gy(t) = 0. All results presented in this paper hold for an arrow shot from a shooting
machine and we take hg = 0.

First we deal with the simple case in which the arrow is free from the pressure point, and
we describe the boundary conditions for the set of PDE’s, (1), (2) and (3) at � = 0 and � = la.
One boundary condition for � = 0 is

M(0; t) = 0 ; (6)

the bending moment being zero because the arrownock is assumed to be a point-mass and it
rotates freely around the string. The other one follows for 0 � t � tr from the movement of
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the middle of the string during the time of release when the string slides over the finger tips,
it is assumed to be

�(0; t) = hr
jODj � b(t)

jODj � b(tr)
; (7)

where tr is the instant the string leaves the finger tips, jODj � b(tr) the contact length and
hr the maximum displacement. The last two quantities depend on the archers technique and
are assumed to be known. Thereafter (t > tr) the motion of the rear end (� = 0) satisfies the
equation of motion for the nock. In order to represent the transverse stiffness of the middle
of the string, we introduce a spring of strength kz = �zkzs, where kzs is the measured static
transverse elasticity of the bow and �z is the associated efficiency. This spring tries to pull
the nock back into the median plane of the bow. Then for tr < t < tl the equation of motion
reads (see also Figure 5)

�man

@2�

@t2
(0; t)�

@M

@�
(0; t) +H(0; t)

@�

@�
(0; t)

= kz
�
�(0; t)� fgG(t) + hg � (b(t) + jOGj)�Gy(t)g

�
; (8)

where we assume that �Gy(t) is small. When the arrownock is free from the string, after
arrow exit (t > tl), we have kz = 0. Observe that at arrow exit, the lateral force V (0; t) can
be discontinuous as a function of time at t = tl. In that case the string jerks out of the nock.

The equations of motion for the mass of the arrowhead constitute the boundary conditions
at � = la,

M(la; t) = 0 ; (9)

because the moment of inertia of the arrowhead is assumed to be zero, and

�mat
@2�

@t2
(la; t) +

@M

@�
(la; t)�H(la; t)

@�

@�
(la; t) = 0 : (10)

Next we deal with the case that the arrow slides along the bow and presses against the
pressure point. The boundary conditions at � = 0 and � = la remain the same as in the
previous case. But now we have two sets of PDE’s at the two adjacent intervals of the arrow
connected at the position �
(t) of the pressure point. This point of contact between the arrow
and the pressure point moves in the (�; �)-coordinate system in the negative �-direction due
to the forward motion of the arrow.

The longitudinal force H(�; t) as well as the bending momentM(�; t) are continuous with
respect to � at �
(t). However, the lateral force V (�; t) shows a discontinuity at the pressure
point. The jump in this force equals the contact force, denoted by R(t) � 0, exerted by the
bow on the arrow, positive in the �-direction. It is given by

R(t) = lim
�"�
(t)

V (�; t)� lim
�#�
(t)

V (�; t) = � lim
�"�
(t)

@M

@�
(�; t) + lim

�#�
(t)

@M

@�
(�; t) ; (11)

where we used continuity of the force H(�; t) and of the first derivative of �(�; t), both with
respect to � at � = �
(t). When a pressure button is used this force satisfies

R(t) =

8>>>><
>>>>:

0 ; �(�
(t); t) > gG(t) + hg;

� Rgmin ; �(�
(t); t) = gG(t) + hg;

Rgmin + kg(gG(t) + hg � �(�
(t); t)); f�(�
(t); t) � gG(t) + hg;
�(�
(t); t) > gG(t) + hg � �g;

� Rgmax ; ; �(�
(t); t) = gG(t) + hg � �;

(12)
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Table 1. Parameters and state variables; t=time, l=length, f=force, m=mass.

Parameters Dimension Interpretation

t t time
� l length coordinate along arrow
�(�; t) l transverse deflection of arrow
M(�; t) f l bending moment in cross-section of arrow
H(�; t) f l longitudinal force in arrowshaft
la l length of arrow
man m mass of nock
mat m mass of arrowhead
d l external diameter of arrowshaft
g l wall thickness of arrowshaft
C l2 area of cross-section of arrowshaft
I l4 moment of inertia of cross-section of arrowshaft
E f l�2 Young’s modulus
� ml�3 mass density
2ma m mass of arrow

kxs f l�1 static longitudinal elasticity of bow
�x – efficiency of bow
kzs f l�1 static transverse elasticity of bow
�z – efficiency of bow associated with transverse elasticity
hr l maximum deflection of nock during release
hg l protrusion of pressure point out of the median plane of bow
gG(t) l transverse displacement of grip
�Gy(t) – angle of rotation of bow
kg f l�1 spring constant of pressure button

R(t) f contact force at pressure point
tr t instant string leaves finger tips
tf t instant arrow becomes free from pressure point
tl t instant arrow leaves string
tg t instant nock passes pressure point

where we introduced kg, Rgmin , � and Rgmax which characterize the pressure button. First, kg is
the spring constant of the spring of the pressure button. Second, Rgmin is caused by the initial
compression of the spring, hence for R � Rgmin the pressure point does not move towards
the grip. Third, � is the maximum length over which the pressure point can move towards the
grip. Fourth, Rgmax is the smallest number for which, when R � Rgmax , the pressure point has
approached the grip by �.

The initial conditions, which complete the formulation of the problem, are

�(�; 0) =
hg

jGDj
� and

@�

@t
(�; 0) = 0 ; (13)

hence at t = 0, the arrow is straight, but does not have to lie along the line of symmetry of
the bow.

Observe that the set of PDE’s (1), (2) and (3) is linear, however, the contact-condition
(12) is nonlinear. In a strict sense the non-homogeneous boundary conditions (7) and (8) also
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make the problem nonlinear with respect to a superposition of solutions for different initial
conditions (13).

Generally in problems with moving boundaries, the position of the boundary is unknown
and has to be determined. In our case, as we mentioned in the introduction, the position of the
boundary between the two parts of the arrow is known in advance, its distance to the end of
the arrow equals �
(t) = b(t) + jOGj.

We calculate also the total acceleration force acting on the arrow in the �-direction. This
quantity is calculated twice. First, Ftot(t) as the integral over the mass distribution times the
local acceleration in the �-direction,

Ftot(t) =

Z la

0
�
@2�

@t2
(�; t) d� +man

@2�

@t2
(0; t) +mat

@2�

@t2
(la; t) : (14)

Second, F+
tot(t) as the sum of the contact force R(t) and the force kz�(0; t) representing the

transverse stiffness of the bow.

F+
tot(t) = R(t)� kz�(0; t) : (15)

For t � tr we have Ftot = F+
tot. For the short time interval 0 � t � tr we have F+

tot 6= Ftot.
In that case the transverse force L(t) exerted by the archers fingers and associated with the
prescribed displacement of the nock, is the difference between the two expressions (14) and
(15), L(t) = Ftot � F+

tot.

3. Finite-difference equations

In the finite-difference method, discretizations are taken for both the spatial and temporal
coordinates. The region to be examined is covered by a rectilinear grid with sides parallel
to the �- and t-axes, with �� and �t being the grid spacing in the �- and t-directions,
respectively. The grid points (�; t) are given by � = i�� and t = j�t, where i and j are
integers and i = j = 0 is the origin. In each grid point there are two state variables, namely
the displacement � and the bending moment M . The domain of i is �1 � i � n + 1 where
n�� = la and j = 0(1)m where m is large enough to cover the time interval of interest. We
use the following notation for the deflection �ji = �(i��; j�t) and for the bending moment
M

j
i = M(i��; j�t). By substitution of V from (2) in (1) we eliminate V . Then with (3) we

have two equations for the two unknowns � and M , namely

�C
@2�

@t2
(�; t)=�

@2M

@�2 +
@H(�; t)

@�

@�

@�
+H(�; t)

@2�

@�2 ; (16)

M(�; t)=EI
@2�

@�2 : (17)

We keepM as one of the unknowns because then the boundary conditions can be implemented
easier. The fictitious points outside the range of the arrow are introduced to get a higher-order
approximation of these boundary conditions at the nock and arrowhead.

The implicit finite-difference formulas for (16) and (17) are, see also [6], with 0 � i � n

�C
�
j+1
i � 2�ji +�

j�1
i

(�t)2 =
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�

 
�

M
j+1
i+1 � 2M j+1

i +M
j+1
i�1
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M
j+1
i = EI

�
j+1
i+1 � 2�j+1

i +�
j+1
i�1

(��)2 (19)

where � is a coefficient; when � = 1 the scheme is the first-order backward Euler scheme and
when � = 1

2 it is the second-order Crank-Nicolson scheme. The boundary conditions (6), (7)
and (8) for � = 0 and (9) and (10) for � = la, are discretized by similar schemes.

The initial conditions (13) become

�0
i =

hg

jGDj
i�� and �1

i � ��1
i = 0 : (20)

The latter equation is used to eliminate ��1
i from (18) for j = 0 with � = 1.

We now discuss the discretization of the contact condition (12) at the pressure point, where,
as we mentioned before, the third-order spatial derivative of the deflections � will show a
discontinuity. We deal with (16) together with (17) on each of the adjacent intervals (0; �
) and

(�
 ; la). The solutions of (16) and (17) are coupled by (12) while, � , @�
@�

and @2�

@�2 (hence also
M ) are continuous at � = �
 . We define g as annteger, so that �
 2 [g��; (g + 1)��]. As for
the boundary conditions at � = 0 and � = la we introduce fictitious points outside the ranges
[0; �
 ] and [�
 ; la] so that we have two extra grid points for g, and g + 1. However, continuity
of the transverse displacements together with the first and second-order partial derivatives
implies that the two transverse displacements in the associated real and fictitious point are
equal. Hence, we do not have to introduce these fictitious points explicitly with respect to the
displacement, but we used the three continuity conditions implicitly. The displacement at point
�
 is obtained by interpolation with a cubic spline in the interval [�g; �g+1] = [g��; (g+1)��].

In order to be able to approximate (11) more appropriately, we kept the two fictitious points
for the bending moment; one in point g�� where this bending moment is denoted by M+,
and the other in point (g+ 1)�� with bending moment M� (Figure 6). As a result, in (18) for
i = g the bending moment Mg+1 has to be replaced by M� and for i = g + 1, Mg by M+.
Equation (11) for R(t) is decretisized by

R((j + 1)�t) =
�M j+1

�
+M j+1

g +M
j+1
g+1 �M

j+1
+

��
(21)

and (12) by

R((j + 1)�t) =

8>>><
>>>:

0 ; �j+1
g � gG((j + 1)�t) + hg ;

� Rgmin ; �j+1
g = gG((j + 1)�t) + hg ;

Rgmin + kgfgG((j + 1)�t) + hg � �j+1
g g; f�j+1

g � gG((j + 1)�t) + hg ;

�j+1
g > gG((j + 1)�t) + hg � �g ;

� Rgmax ; �j+1
g = gG((j + 1)�t) + hg � � :

(22)
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To avoid numerical problems associated with the collision and rebound when the arrow makes
contact with the pressure point, we introduce a large spring constant k�g (possibly the elasticity
of the plastic end piece of the small rod of the pressure button) for the two inflexible positions
of the unilateral support.

At each time step we have to solve a set of linear equations. Initially we assume that
in the considered time step, j�t � t � (j + 1)�t, the arrow does not switch its state of
contact with the pressure point. If there was contact and the resulting contact force is negative,
R((j + 1)�t) < 0, or the arrow was free from the pressure point and the deflection of the
arrow at the position of the pressure point is smaller than the displacement of the pressure
point itself, �(�
(t); t) < gG(t) + hg , (Equation (12)), then the calculations are repeated with
the arrow free from the pressure point, or in contact with the pressure point, respectively.

A combination of the backward-Euler and the Crank-Nicolson technique is used. For the
first time step (j = 0), when the point of contact moves in the time step into the adjacent
interval (g((j + 1)�t) 6= g(j�t)) and, in addition, when in the considered time step the state
of contact between arrow and pressure point changes, we used the robust backward-Euler
scheme, � = 1. Otherwise we used the more accurate Crank-Nicolson scheme, � = 1

2 .
This finite-difference scheme is used to get the results presented in the next sections. To

evaluate the performance of the finite-difference scheme we studied first a vibrating beam
hinged at both ends. Because this allows closed-form solutions, we are able to compare this
solution with the numerical solution, thus obtaining insight into effective values for �� and
�t. All results presented were obtained with n = 32 and �t = 0 � 01 ms.

4. Results and discussion

Pȩkalski defines the concept ‘standard bow and arrow’. This is the equipment used by one
of the best Polish archery competitors. Table 2 gives under the headings “both models” and
“Pȩkalski’s model” a survey of all parameters of this standard bow and arrow, taken from [4].

In Figure 7 we give the shapes calculated by P¸ekalski of the standard arrow shot with the
standard bow for every 2 milliseconds (ms) after release. Note that here, as in Figure 8, the
transverse motion � is given as a function of x and t instead of as a function of � and t. Also,
the experimental shapes are shown. Pȩkalski estimated three parameters, (two of these are
�x = 0 � 76 and �z = 0 � 71), used in his theory, by a least-squares fit of the calculated results
with the experimental data.

In our model we used the parameters provided by Pȩkalski in [4], except those given in
Table 2 under the heading “this model”, which we discuss briefly in the following.

We used the DFD curve shown in Figure 4 which belongs to the Greenhorn Comet TD 350,
68 inch, 30 lbs. This bow differs slightly from the Hoyt Pro Medalist T/D, 66 inch, 34 lbs
bow, used by Pȩkalski.

The flexural rigidity of the arrow EI = 2 � 088Nm2 used by Pȩkalski (Table 2) is smaller
than the value supplied by the manufacturer of the arrow. We used the value supplied by the
manufacturer namely EI = 0 � 0037 10�8 � 7 � 1 1010 = 2 � 6 Nm2. Also the masses of both
arrows differ slightly. In [9] the mass of the Easton 1616X75 is 0 � 0183 kg while the mass of
the 1714X7 arrow Pȩkalski used is 0 � 0188 kg. Therefore some small scaling adjustments to
E(t) being the DFD curve shown in Figure 4, had to be made. The weight of our bow is not
taken equal to the weight of the bow modeled as a linear spring by Pȩkalski, but is chosen so
that the amount of available energy in the drawn bow

R |OD|

|OH|
F (b) db is the same as that in the
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Figure 7. Deformation of arrow: experimental data ( ) and calculated by Pȩkalski ( ), every
2 ms after release, [5]. Only parts of the arrow for � 2 [0; �
(t)] are shown.
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Figure 8. Deformation of arrow: experimental data ( ) after Pȩkalski [5], on basis of model derived
in this paper ( ), every 2 ms after release, until arrow nock passes pressure point at t = tg . Only
parts of the arrow for � 2 [0; �
(t)] are shown.

linear spring model with spring stiffness kxs, 1/2kxs(jODj � jOHj)
2, while the efficiency is

taken equal to the value estimated by Pȩkalski; �x = 0 � 76.
For the pressure button we used the following measured quantities of an OK button,

kg = 622 N/m, Rgmin
= 3 � 3 N, Rgmax

= 7 � 65 N, hence � = 0 � 007 m. The elasticity of the



On the mechanics of the arrow 299

Table 2. Values for the parameters of the Easton 1714X7 (Aluminum 7178) arrow
after [4]. The bow is a Hoyt Pro Medalist T/D, 66 inch, 34 lbs. For the standard
arrow-bow combination Pȩkalski estimated: �x = 0 � 76, �z = 0 � 71.

parameter unit 1714X7 parameter unit 1714X7

both models
d m 0�00675 g m 0�000356
C m2 0�0723 10�4 � kg m�3 2�82 103

la m 0�67 2ma kg 0�0188
man kg 0�0014 mat kg 0�004
jODj m 0�584 jOHj m 0�164
jGDj m 0�645 jGHj m 0�225
�x – 0�76 kzs N/m 270

Pȩkalski’s model
kxs N/m 342 �z – 0�71
F (jODj) N 143 EI Nm2 2�088

this model
jODj � b(tr) m 0�0035 hr m 0�00229
F (jODj) N 119 EI Nm2 2�6
hg m 0 �z – 0�68
kg N/m 622 k�g N/m 18000

plastic end piece of the button is taken equal to k�g = 18000 N/m. In Equation (7) we have
taken jODj � b(tr) = 0 � 0035 m. The parameter hr is equal to 0 � 00229 m, the efficiency
�z equals 0 � 68 and both are tuned so that a good fit is obtained with the experimental data
presented in [4, 5]. We used in all cases hg = 0 (centre-shot bow).

In Figure 8 the shapes of the arrow obtained by means of our model, are compared with
experimental shapes obtained by P¸ekalski. The arrow undergoes a series of bends before its
nock passes the grip. The first bend is with both the arrowhead and especially the nock moving
to the left (from the point of view of the right-handed archer) while the middle of the arrow
moves to the right. After that the arrow oscillates and its frequency is retarded by the normal
force in the shaft of the arrow. As the string approaches brace height, t � 0 � 015 s, the nock is
to the right of the median plane. This is caused by the transverse elasticity of the bow which
tries to pull the nock back into the median plane. At this time the arrowshaft is bending exactly
opposite to the first mentioned bend. As the bow string moves beyond the brace height, the
arrow flexes a third time, in a manner similar to the first bend. This is favorable, since it
helps the fletching to clear the bow. The whole sequence allows the arrow to snake around the
pressure point; see Figure 8 in which also the calculated shapes for t =14, 16 and 18 ms are
partly shown.

In Figure 9 the contact force R(t) as a function of time t is shown. Shortly after release at
t = tr there is contact between the arrow and the pressure point, but the contact force is small
and the arrow looses contact quickly. Thereafter the arrow touches once more the pressure
point and there is a longer period in which there is contact with the pressure point whereby
R(t) is much larger. After t = tf the arrow is definitively free from the pressure point, but
the arrow is still accelerated by the string.
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Figure 9. Contact force R(t). ( ) obtained by means of acceleration force E(b) of Figure 4. Arrow
leaves pressure point definitely at t = tf . Arrow leaves string at t = tl and nock passes pressure point
at t = tg .

Figure 10 gives the total force in the �-direction acting on the arrow. The difference
between the two curves Ftot and F+

tot for t � tr, which must be zero, is small; this is a check
on the implementation of the equations in the computer code. For t � tr this difference is the
transverse force applied by the finger tips upon the string during release. Observe that this
force is rather large for the first time step j = 1; t = ��. This is due to the discontinuity
of the velocity @�

@t
(0; 0) of the nock in the �-direction at t = 0; analytically this force has to

be a Dirac delta function. If the enforced displacement function given by (7) were quadratic
instead of linear, this discontinuity would disappear. Fortunately, calculations showed that the
motion after release is not very sensitive with respect to the precise shape of this function, but
depends on the increase of momentum in the �-direction during release.

When the acceleration force becomes zero at t = tl, the arrow leaves the string. Observe
that the discontinuity of the transverse force on the nock in t = tl is rather small and this
suggests a rather smooth separation of string and arrownock. For t � tl the arrow continues
to oscillate as a free-free beam with (rather small) point masses mat and man at the fore and
the rear ends, respectively. For t = tg the nock of the arrow passes the grip of the bow after
which the still vibrating arrow is on its way to the target.

In Figure 11 is shown the sum of the transverse kinetic energy of the arrow and the potential
energies of the arrow, of the spring which represents the transverse elasticity of the bow and
of the spring in the pressure button, as a function of time.

For 0 � t � tr transverse energy is gained from the bow by means of the way of releasing.
For t � tr the transverse energy can be fed by the force H(�; t) and therefore by E(b). We
observe that the maximum amount of transverse energy in the arrow (0�05 Nm) is small with
respect to the available amount of energy in the fully drawn bow (30�2 Nm) and this justifies
the use of the decoupling of the transverse motion of the arrow from its longitudinal motion.
After t � tl we have H(�; t) = 0 and the transverse energy is almost constant.
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Figure 10. Total forceFtot acting on arrow in �-direction (14), ( ). Also F+tot, (15), ( ), is shown.
F+tot = Ftot for t > tr. Arrow looses contact with pressure point definitely at t = tf . Arrow leaves
string at t = tl and nock passes pressure point at t = tg .
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Figure 11. Transverse kinetic energy plus potential bending energy of arrow plus energy in spring which
represents transverse elasticity of bow plus energy in spring of pressure button.

We performed a sensitivity analysis with respect to the external diameter of the arrowshaft,
d. For the standard arrow we have d = 17=64 inch. Two other diameters are considered,
namely a more flexible arrow with d = 15=64 inch and a stiffer arrow d = 21=64 inch, where
the shaft wall thickness g = 14=1000 inch for each of the three arrows. Observe that the mass



302 B.W. Kooi and J.A. Sparenberg

2114

1514

1714

t [s]

�
(0

;t
)

[m
]

0.0250.020.0150.010.0050

0.02

0.015

0.01

0.005

0

-0.005

-0.01

Figure 12. Paths of nock of three different arrows until nock passes pressure point. ( ) standard
arrow 1714X7, ( ) stiffer (and heavier) arrow 2114X7 and ( ) more flexible (and lighter) arrow
1514X7. Latter arrow slaps against pressure point.

of the arrow changes simultaneously, for instance the more flexible arrow is also lighter. In
Figure 12 the paths of the nocks of the three arrows are compared, until they pass the pressure
point. The more flexible arrow slaps against the pressure point. This is undesirable. The stiffer
arrow clears the grip in a more pronounced fashion, but this results in a rather large jump in
the transverse force at the nock of the arrow when it leaves the string. The reason is that this
force is proportional to the deflection of the nock at that moment.

Pȩkalski’s model predicts for the standard arrow, d = 17=64 inch, that the displacement of
the nock of the arrow out of the median plane is zero for a relatively long time interval preceding
arrow exit at t = tl. His calculations for soft d = 15=64 inch and stiff d = 21=64 inch arrows
suggest that there was not such a period for these two arrows. On the basis of these results
Pȩkalski formulated the following definition of a well-selected bow-arrow combination:

A well-selected bow-arrow subsystem is any system for which the dimensionless param-
eters of the mathematical model of the arrow’s movement during its contact with the bow
have the same values as for the ‘standard’ system.

Pȩkalski introduced dimensionless variables and parameters using la,
q
l�4
a EI=�C and l3a=EI

for length, time and length per force, respectively. Ths, his definition attempts to formulate
in words that the jump in the transverse force acting upon the nock at arrow exit is small
for a well-chosen arrow. Our results, however, show that even for the standard arrow no
long time period preceding arrow exit exists where the displacement of the nock is small. In
our model the arrow leaves the string at the instant the nock passes the median plane again
(Figure 12). Hence, the definition of Pȩkalski of a well-selected bow-arrow combination may
still be useful, although it cannot be based on the stay of the nock of the arrow for a long
period of time in the neighborhood of the median plane of the bow.
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5. Conclusions

Due to the inertia of the bow limbs the SFD and the DFD curves differ significantly. Figure 4
gives the calculated SFD and the DFD curves for a modern working-recurve bow.

In the literature two phenomena are mentioned in explaining the ‘Archers Paradox’: first,
the vibration of the arrow as a vibrating beam; second, the distributed buckling force due to the
acceleration force acting upon the rear end of the arrow, which is enlarged by the arrowhead.
The results obtained in this paper show that the transverse forces associated with the release,
as well as the transverse flexibility of the bow and the contact force exerted by the pressure
point are important. The oscillatory motion is started by the enforced displacement of the nock
during release.

The numerical results obtained fit the experimental data from a high-speed film well, at
least as well as those of Pȩkalski’s model. Observe that the shapes of the arrow for t = 10 and
t = 12 ms predicted by our model (Figure 8), are better than those predicted with Pȩkalski’s
model as shown in Figure 7. It is seen that also a better description is obtained for the important
time period between the detachment of the nock from the string until it passes the pressure
point. Our model makes use of experimental evidence, such as the motion of the string as
it comes off the drawing fingers, and is more consistent and detailed than Pȩkalski’s model.
This makes it possible to investigate in the future more subtle effects, such as the influence of
different arrow dimensions, stabilizers, brace heights, and types of release and of the influence
of the grip of individual competition archers on the bow.
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