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On the mechanicsof the arrow: Archer’s Paradox
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Abstract. In ancient bows the grip of the bow was in the way of the arrow. The arrow needed to get round the
bow while being accelerated; this phenomenon is called the ‘Archer’s Paradox’. In the forties it was observed
experimentally with high-speed cameras that the arrow vibratesin a horizontal plane perpendicular to the vertical
median plane of the bow. These movements are started and controlled by the movements of the two points of
contact with the bow, viz. the middle of the string in contact with the rear end of the arrow and the grip where the
arrow dlides along the bow. The latter contact imposes a moving-boundary condition. The numerically obtained
results are satisfactorily in agreement with experimental data. The model can be used to estimate the drawing
force of ancient bows of which only the contemporary arrows are available and aso for the design of new archery
equipment.
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1. Introduction

One of the most fascinating phenomenain archery is called the * Archer’s Paradox’ . We start
with a simplified exposition of this seeming contradiction. The origin of the paradox is the
vibration of the arrow in a horizontal plane after it has been released, while the bow is kept
vertical. The vibration is caused by the bending of the arrow during and after its release. In
principle, there are the following two different causesfor this bending of the arrow.

The first is related to the way in which the arrow is released; here we are considering
the Mediterranean release. When the bow is fully drawn, it is kept in this position by three
fingersof the archer hooked on the string, the forefinger above and two fingers bel ow the nock
(grooved rear end) of the arrow. When the arrow is launched, the string dlips off the three
finger tips and in this way the nock of the arrow is moved swiftly sideways. Hence, by its
inertia, the arrow will bend.

The second cause of the bending of the arrow is related to the width of the rigid middle
part of the bow, called the grip or handle. When we consider a classical bow in fully drawn
position, the arrow will form a small angle with the median plane of the bow. After release
this angle increases swiftly, because the distance between nock and grip decreases swiftly.
Then again by inertia the arrow will bend.

The bending resulting from the two mentioned causesisincreased by thelargelongitudinal
force exerted by the string on the nock. This force has a buckling effect on the arrow.

* addressfor correspondence: Department of Biology, Free University, DeBoelelaan 1087, 1081 HV Amsterdam,
The Netherlands
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Figure 1. lllustration of Archer’s Paradox (after Klopsteg [1, page 182 ]). Schematic representation of
shapes of arrow during its passage of the bow, based on evidence from speed-flash photography.

Theresults of the two causes of the bending of the arrow can intensify each other or reduce
each other. It is not difficult to see that they reduce each other, for the classical bow, when the
arrow rests on the knuckle of the forefinger of the bow hand, i.e. the hand that grips the bow.
Perhaps thisis the reason that this way of shooting was and still isin use with classical bows.

When the arrow leavesthe string it is still curved and startsto vibrate freely in ahorizontal
plane with a frequency which depends on its mass distribution and on its flexural rigidity
distribution. Now theinertial and the elastic properties of the arrow haveto be such that, while
passing the grip of the bow, the arrow doesnot slap with itsrear end against the grip but snakes
around it, otherwise the accuracy of the shooting would be decreased. The phenomenon of
the arrow snaking around the grip of the bow is called the Archer’s Paradox. In Figure 1 the
paradox isillustrated as taken from Klopsteg [1, page 182].

An application of the above-mentioned phenomenon can be made as follows. We assume
that in former times, when the bow was an important weapon, the arrow was matched, possibly
by trial and error, to abow so that after release it could pass the grip without impediment. In
that case there is arelation between the properties of the bow such asits draw length, its draw
weight (forcein fully drawn position) and the inertial and elastic properties of the arrow. This
relation makesit possible to estimate the draw weight of abow when arrows which have been
shot from the bow are available.

Calculations suggested that the heavy 60 gram war arrows as used at Agincourt in 1415
during the Hundred-Years War, could have been shot from bows with a draw weight of over
450 N. This, however, seemed an unreasonably large value: nowadays only a few archers
can master bows of such a great weight. Based on present-day experience a figure closer to



On the mechanics of thearrow 287

upper limb — |

b SCrews

cut-out ——>

I <— pressure button
pressure point

,,,,,,,

4{p < pressure button
o
arrow rest ; cut-out

<— rigid grip
rigid grip ——>

! <—— median plane
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350 N was thought more likely. The high value of over 450 N was, however, confirmed by
the study of 139 longbows and over 3000 arrows recovered from the Mary Rose (Hardy [2]
and Paterson [3]). The Mary Rose was a warship of Henry VIII, which sank in 1545 and
was recovered in 1982. In [2] it is stated that: “young, fit men in constant practice chosen for
well-paid military service from a nation to whom the shooting of longbows had been second
nature”, could use the heavy Mary-Rose bows.

Hickman invented the so-called centre-shot bow. A cut-out of the grip of the bow allows
the arrow to move in the median plane of the bow in which the elastic limbs move (Figure 2a).
When the bow string is drawn by the right hand (right-handed bow), the cut-out is at the left
side of the bow as seen by the archer and inversely for the left-handed bow where the string
isdrawn by the left hand. The arrow is vertically supported by an arrow rest, aslender elastic
projection on the side of the bow in the cut-out. The point of contact with the grip, where the
lateral motion of the arrow is one-sidedly constrained, is called the pressure point. Nowadays
a pressure button is often used for this constraint. This is a small spring-loaded rod with a
piece of slippery plastic onthe end (Figure 2b). The amount of protrusion of the pressure point
out of the median plane of the bow, as well as the compression of the spring of the pressure
button, can be separately adjusted by means of two screws.

Already in the forties Hickman [1] took high-speed pictures of the vibrating arrow and
showed that the bending properties of the arrow are important. Also Bkalski [4, 5] showed
by means of a high-speed film the shape of the vibrating motion of the arrow and gave a
theoretical trestment of the snaking phenomenon.
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To study the paradox, we have devel oped a mathematical model for the lateral movements
of the arrow. For this reason we have needed the longitudinal force acting on the arrow, which
followsfrom our previouswork of which wegiveashort survey. We dealt with the dynamics of
the bow and arrow, using a simple representation of the arrow, namely a point-mass placed at
the middle of the string [6]. The el astic limbs of the bow were represented by elastic lineswith
anon-uniform mass distribution and a non-uniform flexural rigidity distribution, undergoing
large deflections. For the quasi -stati ¢ deformation of the bow from the braced situation (straight
string) to the fully drawn situation, the equations for this geometrically nonlinear model were
solved numerically by meansof the repeated application of amathematical “shooting” method
[7]. This yields the Static-Force-Draw curve (SFD curve) which shows the force exerted by
the archer when deforming the bow to full draw.

A finite-difference technique was used for the solution of the dynamic equations of the
bow and arrow (point-mass) after release [8, 9]. This yields the Dynamic-Force-Draw (DFD)
curve which gives the acceleration force exerted by the string on the arrow as a function of
traveled distance. Both curves differ significantly from each other, which is caused by the
inertia of the bow limbs asis explained in Section 2.

Themechanicsof the*arrow”, whichisthe subject of this paper, istreated partly uncoupled
from the mechanics of the “bow and arrow”. For the mechanics of the arrow we use, for the
acceleration force exerted by the string on the nock of the arrow, the bFD curve mentioned
in the previous paragraph. The arrow is now considered as a vibrating beam with two point-
masses, namely the nock at the rear end and the arrowhead at the front end. The arrow slides
without friction over the arrow rest by which it is supported vertically and along the pressure
point by which it is unilaterally constrained horizontally. The swift transverse movement of
the nock during release, caused by the dipping of the string from the finger tips, will be
assumed to be known.

The transverse vibratory movement of the arrow is described by two systems of partial
differential equations (PDE’s) when the arrow has contact with the pressure point. Each system
isvalid on one of the two adjacent spatial intervals covering the arrow. The connection point
of these intervals is at the pressure point. At this point the transverse displacement of the
two intervals and some of their spatial derivatives have to satisfy suitable relations, as will
be discussed in Section 2. The position of the pressure point varies with respect to the arrow,
which renders the problem a moving-boundary problem. Because in our formulation the
longitudinal acceleration of the arrow is known in advance, the place of the moving boundary
is known with respect to the arrow. When the arrow has lost contact with the pressure point,
only one system of PDE’sis needed which isvalid a ong the whole length of the arrow. Further
there are in both cases two boundary conditions, one at the rear end being the equation of
motion of the nock and another at the front end being the equation of motion of the arrowhead.
Initial conditions complete the formulation of the problem.

Pekalski’s mathematical model [4, 5] and his analysis was the incentive for reconsidering
the problem. The model presented here is more accurate than Pekalski's model, due to less
stringent assumptions. For instance the acceleration of the arrow and consequently the lon-
gitudinal buckling force caused by the acceleration is rather large and may not be neglected.
Also, the release is modeled more redlistically and this gives a better start for the bending of
the arrow.

In Section 3 afinite-difference schemeis developed to solve the set of PDE’'s numerically.
In Section 4 we compare our results with the theoretical results obtained by Pekalski and with
the bending shapes of the arrow as obtained by his high-speed film. It appearsthat during the
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Figure 3. Static deformation of the modern working-recurve bow: the unbraced bow (), braced bow
and fully drawn bow ( — ) and some intermediate situations ( — — ). At ¢ = 0 the arrow and the
moving-coordinate system (&, ¢), in which the transverse movement of the arrow is described, are
shown.

important last part of the period of time before the nock of the arrow passes the grip of the
bow, our calculated shapes of the arrow are closer to reality than those of Pekalski.

2. Formulation of the problem

We start with a short, more systematic, description of the bow where possibly somerepetitions
occur of subjectsmentioned intheintroduction. Thereader isreferred to [6, 9], for instance, for
an elaborate discussion. The braced bow (straight string) is placed in aright-handed Cartesian
coordinate system (z,y, z), being an inertial frame of reference (see Figure 3). The z-axis
coincideswith the line of symmetry of the bow and the origin O isthe intersection of thisline
with the line that connects the points where the rigid middle part of the bow meets the elastic
limbs. The z-axis is perpendicular to the vertical median plane of the bow. When the bow is
drawn quasi-statically from the braced situation to full draw, the z-coordinate of the middle
of the string coincides with the nock of the arrow and is denoted by b.

In Figure 3 the unbraced, the braced (b = |OH|) and the fully drawn (b = |OD)|) shapes
of amodern working-recurve bow are schematically shown. The distance |O H| is called the
brace height and the distance |OD| the draw. The static force exerted by the archer in the
positive z-direction, is denoted by F'(b) which follows directly from the already mentioned
SFD curve. Inthefully drawn situation, theforce F/(|OD)|) is called the weight of the bow. The
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Figure 4. Calculated Static-Force-Draw curve, F(b) ( —), and Dynamic-Force-Draw curve, E(b)
(==), of amodern working-recurve bow (Greenhorn Comet TD 350, 68 inch, 30 Ibs).

projection of the pressure point on the z-axisisindicated by G, thisis also the point wherethe
archer holds the bow and which can be considered as the pivot point of bow rotations which
can occur after release. The components of the distance between the origin and the pressure
point in the z- and z-direction are denoted by |OG| and h,,, respectively. For ancient bows
|OG| = 0and h,, isthe half width of the grip. In Table 1 asurvey of various parameters of a
bow and arrow is given.

In Figure 4 we show, for amodern working-recurve bow as discussed in [9], the calculated
SFD (F'(b)) and the DFD (E(b)) curves, where E(b) is the acceleration force acting upon the
arrow asfunction of b. The mass of the rather stiff string islumped into three mass points each
equal to one-third of the mass of the string. These points are at the two tips of the limbs and
in the middle of the string where it adds to the mass of the nock of the arrow. The addition of
the lumped part of the massto the nock is only used with respect to the cal culation of the DFD
curve and not later on with respect to transverse motions. At release (t = 0+) the acceleration
force E(|OD|), is smaller than the static draw-force, F'(|OD]). This remains true for some
time. Thisis caused by the mass of the elastic limbs and the inertia of the added parts of the
string, which have to be accelerated as well. After this period of time, E(b) is larger than
F'(b) because then the inertia of the limbs, which then are decelerated, adds to the force on
the arrow. Arrow exit at ¢ = ¢;, when the arrow leaves the string, is defined by the instant the
acceleration force E(b) becomes zero.

The arrow is inextensible and its longitudinal motion is determined by the acceleration
force E(t) = E(b(t)). Only transverse deflections which are small with respect to the length
of the arrow will be considered. The arrow is placed in amoving Cartesian coordinate system
(&, ¢), the ¢-axis coinciding with z-axis, but pointing in the opposite direction and the ¢-axis
paralel to the z-axis. The origin of the (£, ¢) system has the same z-coordinate as the nock of
the arrow (Figures 3 and 5).
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Figure 6. Scheme of model of arrow. Each element, i = 1, - - - ) n, haslength A¢. Between grid-points
we have mass per unit of length pC' and flexura rigidity E1. Two fictitious points outside arrow are
introduced, grid-points¢ = —1 and i = n + 1. Pressure point at ¢ = &,. Grid point to the left of
pressure point is denoted by g. Two extra unknown bending moments M/ and M, at points g and
g + 1, respectively.

The arrowshaft of length [, is assumed to be an inextensible Euler-Bernoulli beam hinged
at the point of contact with the string by the nock. It is supported by the arrow rest and in
the horizontal plane unilaterally guided by the pressure button with built-in spring with initial
compression. At each end of the shaft there is a mass-point, the nock with mass m,,,, and the
arrowhead with mass m,;. The cross-sectional quantities are the bending moment M (¢, ), a
lateral force V (&, t) in the (-direction and alongitudinal force H (¢, t) in the ¢-direction. The
positive directionsof M, V and H are shown in Figure 6.

In the coordinate system (¢, ¢) the following set of PDE’s describe the motion of the shaft
of the arrow

0? 0
Cen=27 M

pC 85 )
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where ( (¢, t) isthetransverse deflection of thearrow whichisafunction of time¢ and distance
¢ from the rear end. The circular cylindrical arrow is endowed with mass per unit of length
pC, where p is the specific mass of the shaft material, and with flexural rigidity ET, where
FE is Young's modulus of the shaft material. The area C' of the material cross-section and its
second moment of inertia I with respect to the centre-line of its cross-section are given by

C=m(d®—(d—29)%) /4 and I = (d*— (d—29)*) /64. 4

whered and g are the external diameter and the shaft wall thickness of the arrow, respectively,
which are chosento beindependent of £. Thisholdsfor modern tubular arrowshafts. Formerly,
solid wooden arrowshafts were used; in that case we have g = 1/2d. The total mass of the
arrow is denoted by 2m, = myq, + pCl, + mq, Where the factor 2 is inserted to account
for symmetry of the bow. The longitudinal force H(¢,t), 0 < ¢ < I,, aong the arrow is
coupled to the acceleration of the arrow in the z-direction. For £ | O it is the acceleration
force, E(t) = —2m,b, exerted by the string on the arrow minus the force, —m,,, b, needed
to accelerate the nock. We assume that E(t) is equal to the value found for the bow with
the arrow treated as a point mass in the middle of the string, (Figure 4). For ¢ € (0,1,) the
following expression holds

H(&, ) = b(t) (pC(la =€) + mar) - ®)

After arrow exit we have no acceleration force and becausethe arrow isinextensible H (¢, ¢) =
Ofort > t.

We now give some considerations in connection with possible movements of the bow out
of the (z, y)-plane during and after release. The movements are assumed to be small so that
their influence is linear. The displacement of the grip in the z-direction is denoted by g¢(¢)
and the angle of rotation around aline parallel to the y-axis and through the pivot point G on
the z-axis, is denoted by aq, (t). Modern bows are often equipped with several stabilizersto
reduce lateral movements as well as rotations of the bow. When shot by an individual archer
from hand, experimental values of g (), measured as described in [10, 11], can be used to
simulate the motion of the grip. Then the bow isheld loosely by the archer so that it can rotate
freely around the vertical axisthrough the pivot point G and equations of mation for the bow
as awhole have to be formulated to determine o, () in the course of the calculation of the
motion of the arrow. When mechanical shooting machines are used, the grip is assumed to
be at a fixed point in the coordinate system (z, y, z). In that case we have g5 (t) = 0 and
aso agy(t) = 0. All results presented in this paper hold for an arrow shot from a shooting
machine and we take h, = 0.

First we deal with the simple case in which the arrow is free from the pressure point, and
we describe the boundary conditions for the set of PDE's, (1), (2) and(3) at ¢ = 0and £ = [,.
One boundary condition for ¢ = 0is

M(0,t) =0, (6)

the bending moment being zero because the arrownaock is assumed to be a point-mass and it
rotates freely around the string. The other one follows for 0 < ¢ < ¢, from the movement of
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the middle of the string during the time of release when the string slides over the finger tips,
it isassumed to be
|OD| —b(t)
0.0 =he (5o i) (7)
where ¢, is the instant the string leaves the finger tips, |OD| — b(¢,) the contact length and
h, the maximum displacement. The last two quantities depend on the archers technique and
are assumed to be known. Thereafter (¢t > ¢,) the motion of the rear end (¢ = 0) satisfies the
equation of motion for the nock. In order to represent the transverse stiffness of the middle
of the string, we introduce a spring of strength &, = n,k,,, where k,, is the measured static
transverse elasticity of the bow and 7, is the associated efficiency. This spring tries to pull
the nock back into the median plane of the bow. Then for ¢, < ¢ < t; the equation of motion
reads (see also Figure 5)

82¢ oM a¢
5300 — 5 (0.0 + HO.H T (0.1

= kz [C(Oa t) - {gG( ) + hg - (b(t) + |OG|)aGy(t)}] ) (8)
where we assume that o, (t) is small. When the arrownock is free from the string, after
arrow exit (t > t;), we have k, = 0. Observe that at arrow exit, the lateral force V' (0, t) can
be discontinuous as afunction of time at ¢ = ¢;. In that case the string jerks out of the nock.

The equations of motion for the mass of the arrowhead constitute the boundary conditions
ac =1,

—Man

M(lq,t) =0, )
because the moment of inertia of the arrowhead is assumed to be zero, and
0%¢ oM ¢
— Mat =5 las - a -H as as =
m o2 (g, t) + o€ (Iq,t) (g, t) = o (I, t) =0. (10)

Next we deal with the case that the arrow slides along the bow and presses against the
pressure point. The boundary conditions at £ = 0 and £ = [, remain the same as in the
previous case. But now we have two sets of PDE’s at the two adjacent intervals of the arrow
connected at the position &, (¢) of the pressure point. This point of contact between the arrow
and the pressure point moves in the (¢, ¢)-coordinate system in the negative ¢-direction due
to the forward motion of the arrow.

Thelongitudinal force H (£, t) aswell asthe bending moment M (&, t) are continuouswith
respect to ¢ at &, (¢). However, the lateral force V' (€, t) shows a discontinuity at the pressure
point. The jump in this force equals the contact force, denoted by R(¢) > 0, exerted by the
bow on the arrow, positivein the (-direction. It is given by

k(1) :ﬁlg? V(& t)—algrg)V(ff, t) = — fm 5 (5, t) + fif'y 5 (5, t, (11

where we used continuity of the force H (¢, ¢) and of the first derivative of ( (¢, t), both with
respect to ¢ at & = &, (t). When a pressure button is used this force satisfies

0 7C(£’Y() )>gG()+h97
<Rgm|n 7C(£’Y() )_gG()+h97
R(t) = { Rgmin + kg(96(8) + by — C(&4(8),1)), {C(&5(2),1) < ga(t) + hy; (12)
C(&y(t), 1) > ga(t) + hyg — }
2 Rgmaxa ) C(S’Y( )7t) = ( )+h
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Table 1. Parameters and state variables; t=time, |=length, f=force, m=mass.

Parameters Dimension  Interpretation

time

length coordinate along arrow

transverse deflection of arrow

bending moment in cross-section of arrow
longitudinal force in arrowshaft

length of arrow

mass of nock

mass of arrowhead

externa diameter of arrowshaft

wall thickness of arrowshaft

area of cross-section of arrowshaft
moment of inertia of cross-section of arrowshaft
f172 Young's modulus

mass density

mass of arrow

—~
"%
~
~—
—_ = — — -+

an

at

-—-33-—

m~QR &33

N D
3
2
33

8
3
—
|
-

static longitudinal elasticity of bow
efficiency of bow
static transverse elasticity of bow
efficiency of bow associated with transverse elasticity
maximum deflection of nock during release
protrusion of pressure point out of the median plane of bow
transverse displacement of grip
- angle of rotation of bow
kg f1-t spring constant of pressure button

n B
@
—-
|
-

QL FTI TS O
Qmﬂbz B
—~

-

=

- = — 1

f contact force at pressure point
t instant string leaves finger tips
ty t instant arrow becomes free from pressure point
t instant arrow leaves string
t instant nock passes pressure point

whereweintroduced kg, R, ;,, € and R, which characterize the pressure button. First, kg is
the spring constant of the spring of the pressure button. Second, R, is caused by the initial
compression of the spring, hence for R < R, ;, the pressure point does not move towards
the grip. Third, e is the maximum length over which the pressure point can move towards the
grip. Fourth, R, __ isthe smallest number for which, when R > R the pressure point has

gmax G
approached the grip by e.
Theinitial conditions, which complete the formulation of the problem, are
_ Ny ¢ _
((&0) = |GD|§ and —2(¢,0) =0, (13)

hence at ¢ = O, the arrow is straight, but does not have to lie along the line of symmetry of
the bow.

Observe that the set of PDE's (1), (2) and (3) is linear, however, the contact-condition
(12) is nonlinear. In a strict sense the non-homogeneous boundary conditions (7) and (8) also
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make the problem nonlinear with respect to a superposition of solutions for different initial
conditions (13).

Generdly in problems with moving boundaries, the position of the boundary is unknown
and has to be determined. In our case, as we mentioned in the introduction, the position of the
boundary between the two parts of the arrow is known in advance, its distance to the end of
the arrow equals &, (t) = b(t) + |OG]|.

We calculate aso the total acceleration force acting on the arrow in the ¢-direction. This
quantity is calculated twice. First, F}, () asthe integral over the mass distribution times the
local acceleration in the ¢-direction,

0%
ot?

0%

Ot 2 (07 75) + Mt

la 2
Furlt) = [ "5 T (6,0 dt + man 25 (lost) . (14)

P ot
Second, F;!,(t) asthe sum of the contact force R(t) and the force k¢ (0, t) representing the
transverse stiffness of the bow.

Fiby(t) = R(t) — k2¢(0,1) . (15)

For ¢t > t, we have Fy,; = F;’,. For the short timeinterval 0 < ¢ < t, we have F}}, # Fy.
In that case the transverse force L(t) exerted by the archers fingers and associated with the
prescribed displacement of the nock, is the difference between the two expressions (14) and
(15), L(t) = Fioy — F;},.

3. Finite-difference equations

In the finite-difference method, discretizations are taken for both the spatial and temporal
coordinates. The region to be examined is covered by a rectilinear grid with sides parallel
to the £- and t-axes, with A¢ and At being the grid spacing in the £- and ¢-directions,
respectively. The grid points (£,t) aregivenby ¢ = i A and t = j At, where i and j are
integersand ¢ = j = O isthe origin. In each grid point there are two state variables, namely
the displacement ¢ and the bending moment M. The domain of 7 is —1 < 7 < n + 1 where
n A¢ =1, and 7 = 0(1)m where m is large enough to cover the time interval of interest. We
use the following notation for the deflection ¢} = ((iA¢&, jAt) and for the bending moment
M! = M(iA¢, jAt). By substitution of V' from (2) in (1) we eliminate V. Then with (3) we
have two equations for the two unknowns ¢ and M, namely

azg _9°M | OH(&,1) ag ¢
e =nr28 an
6)52 ‘

Wekeep M asone of the unknowns becausethen the boundary conditions can beimplemented
easier. Thefictitious points outside the range of the arrow are introduced to get a higher-order
approximation of these boundary conditions at the nock and arrowhead.

The implicit finite-difference formulas for (16) and (17) are, seealso [6], with0 < i < n

gh-ad gt
anz

pC
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where i isacoefficient; when 1, = 1 the schemeisthe first-order backward Euler scheme and
when = % it is the second-order Crank-Nicolson scheme. The boundary conditions (6), (7)
and (8) for ¢ = 0and (9) and (10) for £ = [, are discretized by similar schemes.
Theinitial conditions (13) become

(P = 1y 1A and (=G =0. (20)

The latter equation is used to eliminate C{l from (18) for j = Owith u = 1.

We now discussthe discretization of the contact condition (12) at the pressure point, where,
as we mentioned before, the third-order spatial derivative of the deflections ¢ will show a
discontinuity. We deal with (16) together with (17) on each of the adjacent intervals (0, ¢,) and

(&y:1a). The solutions of (16) and (17) are coupled by (12) while, ¢, 3¢ and § e C (hence also

M) are continuous at £ = ¢,. We define g as annteger, so that £, € [gAé’ (g + 1)A£] Asfor
the boundary conditions at ¢ = 0 and ¢ = [, we introduce fictitious points outside the ranges
[0,¢,] and [, 1,] so that we have two extragrid pointsfor g, and g + 1. However, continuity
of the transverse displacements together with the first and second-order partial derivatives
implies that the two transverse displacements in the associated real and fictitious point are
equal. Hence, we do not have to introduce these fictitious points explicitly with respect to the
displacement, but we used the three continuity conditionsimplicitly. The displacement at point
¢, isobtained by interpolationwith acubic splineintheinterval [£,, &,11] = [gAE, (9+1)AL].

In order to be ableto approximate (11) more appropriately, we kept the two fictitious points
for the bending moment; one in point gA¢ where this bending moment is denoted by M,
and the other in point (g + 1) A¢ with bending moment M _ (Figure 6). Asaresult, in (18) for
i = g the bending moment M, 1 hasto be replaced by M_ and for i = g + 1, M, by M.
Equation (11) for R(t) is decretisized by

A i it it
M7 M MO - M -

R((j +1)At) =

Ag
and (12) by
0 , G > g9a((G+ DAL + by,
< Rgmln <]+l = g(‘((] + 1)At) + hg k)
R((j +DAt) = § Ryin + kg{9c((G + DAL) + hy — CJ“} {C’“ < ga((j + DAL) + hy
g“ > ga((j + 1)At) + hy — €},
> Ry , T =ga((G+ DAt) +hy — €

(22)
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To avoid numerical problems associated with the collision and rebound when the arrow makes
contact with the pressure point, we introduce alarge spring constant £ (possibly the elasticity
of the plastic end piece of the small rod of the pressure button) for the two inflexible positions
of the unilateral support.

At each time step we have to solve a set of linear equations. Initially we assume that
in the considered time step, jAt < t < (j + 1)At, the arrow does not switch its state of
contact with the pressure point. If there was contact and the resulting contact forceis negative,
R((5 + 1)At) < 0, or the arrow was free from the pressure point and the deflection of the
arrow at the position of the pressure point is smaller than the displacement of the pressure
point itself, ((&,(t),t) < ga(t) + hg, (Equation (12)), then the cal culations are repeated with
the arrow free from the pressure point, or in contact with the pressure point, respectively.

A combination of the backward-Euler and the Crank-Nicolson technique is used. For the
first time step (j = 0), when the point of contact moves in the time step into the adjacent
interval (g((j + 1)At) # g(jAt)) and, in addition, when in the considered time step the state
of contact between arrow and pressure point changes, we used the robust backward-Euler
scheme, 1 = 1. Otherwise we used the more accurate Crank-Nicolson scheme, i = %

This finite-difference scheme is used to get the results presented in the next sections. To
evaluate the performance of the finite-difference scheme we studied first a vibrating beam
hinged at both ends. Because this allows closed-form solutions, we are able to compare this
solution with the numerical solution, thus obtaining insight into effective values for A¢ and
At. All results presented were obtained withn = 32 and At = 0- 01 ms.

4. Resultsand discussion

Pekalski defines the concept ‘ standard bow and arrow’. This is the equipment used by one
of the best Polish archery competitors. Table 2 gives under the headings “both models’ and
“Pekalski’'smodel” asurvey of all parameters of this standard bow and arrow, taken from [4].

In Figure 7 we give the shapes calculated by Ekalski of the standard arrow shot with the
standard bow for every 2 milliseconds (ms) after release. Note that here, asin Figure 8, the
transverse motion ¢ is given as afunction of 2 and ¢ instead of asafunction of £ and ¢. Also,
the experimental shapes are shown. Pekalski estimated three parameters, (two of these are
n: = 0-76andn, = 0-71), used in histheory, by aleast-squaresfit of the calculated results
with the experimental data.

In our model we used the parameters provided by Pegkalski in [4], except those given in
Table 2 under the heading “this model”, which we discuss briefly in the following.

We used the DFD curve shown in Figure 4 which belongsto the Greenhorn Comet TD 350,
68 inch, 30 Ibs. This bow differs slightly from the Hoyt Pro Medalist T/D, 66 inch, 34 Ibs
bow, used by Pekalski.

The flexural rigidity of the arrow ET = 2 - 088Nm? used by Pekalski (Table 2) is smaller
than the value supplied by the manufacturer of the arrow. We used the value supplied by the
manufacturer namely ET = 0-0037 1078 x 7- 1 10'° = 2. 6 Nm?. Also the masses of both
arrows differ dlightly. In [9] the mass of the Easton 1616X75is 0 - 0183 kg while the mass of
the 1714X7 arrow Pekalski used is 0 - 0188 kg. Therefore some small scaling adjustments to
E(t) being the DFD curve shown in Figure 4, had to be made. The weight of our bow is not
taken equal to the weight of the bow modeled as alinear spring by Pekalski, but is chosen so
that the amount of available energy in the drawn bow [ ST F'(b) db is the same as that in the
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Figure 7. Deformation of arrow: experimental data ( ---) and calculated by Pekalski (— ), every
2 ms after release, [5]. Only parts of the arrow for ¢ € [0, &, (¢)] are shown.
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Figure 8. Deformation of arrow: experimental data ( - - - ) after Pekalski [5], on basis of model derived
in this paper (— ), every 2 ms after release, until arrow nock passes pressure point at ¢ = ¢,. Only

parts of thearrow for ¢ € [0, &, (¢)] are shown.

linear spring model with spring stiffness k., 1/2k,,(|OD| — |OH|)?, while the efficiency is
taken equal to the value estimated by Pekalski; 7, = 0 - 76.

For the pressure button we used the following measured quantities of an OK button,
kg =622N/m, R, . =3-3N,R = 7-65N, hencee = 0- 007 m. The elasticity of the

gmaz
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Table 2. Values for the parameters of the Easton 1714X7 (Aluminum 7178) arrow
after [4]. The bow is a Hoyt Pro Medalist T/D, 66 inch, 34 Ibs. For the standard
arrow-bow combination Pekalski estimated: n, = 0- 76,7, = 0- 71

parameter unit  1714X7 parameter  unit 1714X7
both models

d m 0-00675 g m 0-000356
C m?  0.0723107% p kgm=2 2.8210°
la m 0-67 2mg kg 0-0188
Man kg 00014 Mar kg 0-004
|OD| m 0584 |OH| m 0-164
|GD| m 0645 |GH| m 0225
Pekal ski’s model

F(|OD)) N 143 ET Nm? 2.088
this model

|OD| — b(t,) m 00035 ho m 0-00229
F(|OD)) N 119 ET Nm? 2:6

hy m 0 . - 0-68

kg N/m 622 kj N/m 18000

plastic end piece of the button is taken equal to £; = 18000 N/m. In Equation (7) we have
taken |OD| — b(t,) = 0- 0035 m. The parameter &, is equal to 0 - 00229 m, the efficiency
n, equals 0 - 68 and both are tuned so that a good fit is obtained with the experimental data
presentedin [4, 5]. We used in all cases h, = 0 (centre-shot bow).

In Figure 8 the shapes of the arrow obtained by means of our model, are compared with
experimental shapes obtained by Bkalski. The arrow undergoes a series of bends before its
nock passesthe grip. Thefirst bend iswith both the arrowhead and especially the nock moving
to the left (from the point of view of the right-handed archer) while the middle of the arrow
movesto theright. After that the arrow oscillates and its frequency is retarded by the normal
force in the shaft of the arrow. Asthe string approachesbrace height, t =~ 0- 015 s, the nock is
to the right of the median plane. Thisis caused by the transverse elasticity of the bow which
triesto pull the nock back into the median plane. At thistime the arrowshaft is bending exactly
opposite to the first mentioned bend. As the bow string moves beyond the brace height, the
arrow flexes a third time, in a manner similar to the first bend. This is favorable, since it
helps the fletching to clear the bow. The whole sequence allows the arrow to snake around the
pressure point; see Figure 8 in which also the calculated shapesfor t =14, 16 and 18 ms are
partly shown.

In Figure 9 the contact force R(t) asafunction of time ¢ is shown. Shortly after release at
t = t, thereis contact between the arrow and the pressure point, but the contact force is small
and the arrow looses contact quickly. Thereafter the arrow touches once more the pressure
point and there is alonger period in which there is contact with the pressure point whereby
R(t) is much larger. After ¢ = ¢ the arrow is definitively free from the pressure point, but
the arrow is still accelerated by the string.



300 B.W. Kooi and J.A. Sparenberg
4 | | |

35 | i
3k i
25 | -
> L i

RIN]

o.z—/j\ | L | ) .

g v

0 0.005 0.01 0.015 0.02
tr tf tl tg
t[d]

Figure 9. Contact force R(t). (—) obtained by means of acceleration force E(b) of Figure 4. Arrow
leaves pressure point definitely at ¢ = ¢ ;. Arrow leaves string at ¢ = ¢; and nock passes pressure point
at=t,.

Figure 10 gives the total force in the (-direction acting on the arrow. The difference
between the two curves Fj,; and F,!, for t > t,, which must be zero, is small; thisis a check
on the implementation of the equationsin the computer code. For ¢ < ¢, this differenceisthe
transverse force applied by the finger tips upon the string during release. Observe that this
force is rather large for the first time step j = 1,¢ = A£. Thisis due to the discontinuity
of the velocity %(O, 0) of the nock in the ¢-direction at ¢ = 0O; analytically this force has to
be a Dirac delta function. If the enforced displacement function given by (7) were quadratic
instead of linear, this discontinuity would disappear. Fortunately, cal culations showed that the
motion after releaseis not very sensitive with respect to the precise shape of this function, but
depends on the increase of momentum in the ¢-direction during release.

When the accel eration force becomes zero at ¢ = #;, the arrow leaves the string. Observe
that the discontinuity of the transverse force on the nock in ¢ = #; is rather small and this
suggests a rather smooth separation of string and arrownock. For ¢ > #; the arrow continues
to oscillate as a free-free beam with (rather small) point masses m,; and m,,, at the fore and
the rear ends, respectively. For ¢ = ¢, the nock of the arrow passesthe grip of the bow after
which the still vibrating arrow is on its way to the target.

In Figure 11 isshown the sum of thetransversekinetic energy of the arrow and the potential
energies of the arrow, of the spring which represents the transverse elasticity of the bow and
of the spring in the pressure button, as a function of time.

For 0 <t < t, transverse energy is gained from the bow by means of the way of releasing.
For ¢ > t, the transverse energy can be fed by the force H (¢, t) and therefore by E(b). We
observe that the maximum amount of transverse energy in the arrow (0-05 Nm) is small with
respect to the available amount of energy in the fully drawn bow (30-2 Nm) and thisjustifies
the use of the decoupling of the transverse motion of the arrow from its longitudinal motion.
After t > t; we have H (¢, t) = 0 and the transverse energy is almost constant.
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Figure 10. Total force F,; acting on arrow in ¢-direction (14), (- = ). Also Ft,, (15), (— ), isshown.
F*t = Fio for t > t,. Arrow looses contact with pressure point definitely at ¢ = t¢. Arrow leaves

to

string at ¢ = ¢; and nock passes pressure point at ¢ = ¢,.
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Figure 11. Transverse kinetic energy plus potential bending energy of arrow plusenergy in spring which
represents transverse elasticity of bow plus energy in spring of pressure button.

We performed a sensitivity analysiswith respect to the external diameter of the arrowshaft,
d. For the standard arrow we have d = 17/64 inch. Two other diameters are considered,
namely amore flexible arrow with d = 15/64 inch and a stiffer arrow d = 21/64 inch, where
the shaft wall thickness g = 14/1000 inch for each of the three arrows. Observe that the mass
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Figure 12. Paths of nock of three different arrows until nock passes pressure point. ( —) standard
arrow 1714X7, (= = ) stiffer (and heavier) arrow 2114X7 and (--- ) moreflexible (and lighter) arrow
1514X7. Latter arrow slaps against pressure point.

of the arrow changes simultaneously, for instance the more flexible arrow is also lighter. In
Figure 12 the paths of the nocks of the three arrows are compared, until they passthe pressure
point. The more flexible arrow slaps against the pressure point. Thisisundesirable. The stiffer
arrow clears the grip in amore pronounced fashion, but this resultsin a rather large jump in
the transverse force at the nock of the arrow when it leaves the string. The reason is that this
force is proportional to the deflection of the nock at that moment.

Pekalski’s model predictsfor the standard arrow, d = 17/64 inch, that the displacement of
the nock of thearrow out of themedian planeiszerofor arelatively longtimeinterval preceding
arrow exit at ¢ = ¢;. His calculationsfor soft d = 15/64 inch and stiff d = 21/64 inch arrows
suggest that there was not such a period for these two arrows. On the basis of these results
Pekalski formulated the following definition of awell-selected bow-arrow combination:

A well-selected bow-arrow subsystem is any system for which the dimensionless param-
eters of the mathematical model of the arrow’s movement during its contact with the bow
have the same values as for the ‘standard’ system.

Pekal ski introduced dimensionlessvariablesand parametersusingl,, \/lo * EI/pC andi3/ET
for length, time and length per force, respectively. Ths, his definition attempts to formulate
in words that the jump in the transverse force acting upon the nock at arrow exit is small
for a well-chosen arrow. Our results, however, show that even for the standard arrow no
long time period preceding arrow exit exists where the displacement of the nock is small. In
our model the arrow leaves the string at the instant the nock passes the median plane again
(Figure 12). Hence, the definition of Pgkalski of awell-selected bow-arrow combination may
still be useful, although it cannot be based on the stay of the nock of the arrow for a long
period of time in the neighborhood of the median plane of the bow.
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5. Conclusions

Due to the inertia of the bow limbs the sFD and the DFD curves differ significantly. Figure 4
gives the calculated sFD and the DFD curves for a modern working-recurve bow.

In the literature two phenomena are mentioned in explaining the ‘ Archers Paradox’: first,
thevibration of the arrow asavibrating beam; second, the distributed buckling force dueto the
accel eration force acting upon the rear end of the arrow, which is enlarged by the arrowhead.
The results obtained in this paper show that the transverse forces associated with the release,
as well as the transverse flexibility of the bow and the contact force exerted by the pressure
point are important. The oscillatory motion is started by the enforced displacement of the nock
during release.

The numerical results obtained fit the experimental data from a high-speed film well, at
least aswell asthose of Pekalski’smodel. Observe that the shapes of the arrow for ¢ = 10 and
t = 12 ms predicted by our model (Figure 8), are better than those predicted with Pekalski's
model asshowninFigure7. Itisseenthat also abetter description isobtained for theimportant
time period between the detachment of the nock from the string until it passes the pressure
point. Our model makes use of experimental evidence, such as the motion of the string as
it comes off the drawing fingers, and is more consistent and detailed than Pgkalski’s model.
Thismakesit possible to investigate in the future more subtle effects, such as the influence of
different arrow dimensions, stabilizers, brace heights, and types of release and of theinfluence
of the grip of individual competition archers on the bow.
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